=

Convolutional Neural Networks
for Particle Tracking

Steve Farrell
for the HEP.TrkX project

May 8, 2017
DS@HEP, FNAL

—\l EEEEEEEEEEEEEEEEEEEEE =% Caltech F rmll
AAAAAAAAAAAAAAAAAAAAAAAAAA q P ' 3
,

Particle tracking at the LHC

* An Iinteresting and challenging
pattern recognition problem

* A very important piece of event
reconstruction!

Up to 200 interactions per bunch crossing Thousands of charge particle tracks

ATLAS and CMS tracking detectors

A =
an ' Cor
: ATLAS : 1.5 .:3\ 1.1 oo\ 97 05 03 01 01 ?3 05 oCMS 1.1) 1.3)
I — - A TEEEEy ;: T < 1200 -
:-~° B ‘ ‘ ‘ ‘ . TJOB ‘ { ‘ l ‘ ‘
o =' — a0 [N 1 | — - | | |]
M " —— 2o 4] A0 A
""" S | B I ||= =~ : (Lt L | 0
| N :z o r4 [l r| f,.Dl = =——FB—== WD (ff Vi
0 TEC- - —=— PIXEL TEC+
11 -200 1] e T i -
21m | w| VU TDEE =0 g
000 L B L L L L L e e | | | I
\| Barrel semiconductor tracker g0 | I ! I | ——— |]‘ LEL L L]l
/i Pixel detectors oo ||| I TOB (T 8
O Barrel fransition radiation fracker 1200 — e — ’

2600 2200 1800 1400 1000 600 200 200 500 1000 1400 1800 2200 2600
End-cap transition radiation fracker = (mm) —— &

tp://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08004

End-cap semiconductor tracker ht

http://atlas.cern/discover/detector/inner-detector

 Cylindrical detectors composed of pixel, strip, or TRT
layers to detect passage of charged particles

* Both undergoing evolution for HL-LHC
* O(100M) readout channels!

http://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08004
http://atlas.cern/discover/detector/inner-detector

The situation today

e Current tracking algorithms have been used very
successfully in HEP/LHC experiments

* Good efficiency and modeling with acceptable throughput/
latency

* However, they don’t scale so well to HL-LHC conditions

» Thousands of charged particles, O(10°) 3D spacepoints,
while algorithms scale worse than quadratic

* Thus, it's worthwhile to try and think “outside the box”; i.e.,
consider Deep Learning algorithms

* Relatively unexplored area of research

* Might be able to reduce computational cost or at least
increase parallelization

* Might see major improvements

Some deep learning inspirations

Image segmentation

Image captioning

Vision Language
Deep CNN Generating
RNN

G

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

0.4

0.2 . *

X

0.2

-0.4

0.4

0.2 .« "

X

-0.2

-0.4

1

0.8

£

Online object tracking

-

-

= o—a

I

Tracking result Ground truth

Existence prob.

https://arxiv.org/abs/1604.02135
https://arxiv.org/abs/1604.03635

Current algorithmic approach (ATLAS, CMS)

* Divide the problem into sequential steps
1. Cluster hits into 3D spacepoints
2. Build triplet “seeds”

3. Build tracks with combinatorial
Kalman Filter

4. Resolve ambiguities and fit tracks

()
%>
seed making . 5

N NS e T T

> Spacepoints > |()5> SP triplets > 10° > Seeds > l()4> Tracks > 10°

track following -~

Credit: Andy Salzburger

Alternative approaches include Hough transform, Cellular Automaton, RANSAC, etc. |

Where to begin?

* What could ML be applied to?
* hit clustering
* seed finding
* single-track hit assignment
» multiple-track “clustering” Many options!
e track fitting
* end to end pixels to tracks

* How to represent the inputs, outputs (and
intermediates)?

» discrete vs. continuous space
* hit assignments vs. physics quantities
* engineered vs. learned representations

Various challenges

] CMS “tilted” proposal for HL-LHC
° Data Sparsrty 00 02 04 06 0.8 1.0 1.2 1.4 >

e 0 | | 1.8
Occupancy << 1% S

| | y 9

* Except in dense jets... « N ! } 2

_ . 400 SSSAA VAL L L Ly :i :E :: :: 2%

e Data irregularity TR I DTN T I I ”
P Complex geometry 0 500 1000 1500 2000 2500 z l|mm]

» Detector inefficiencies, material effects
e Defining good cost functions
 Particularly for multi-track models
* How to quantify reco efficiency in a differentiable way?
 Experimental constraints on performance, interpretability
A big deal, for obvious reasons
 Time and space complexity constraints
* Otherwise, what's the point?

Detector images

* Neutrino experiments may have nice “image” detectors, but it's a bit

harder with LHC detectors!

Nova

0.0 0.2 0.4

0.6

1.0

CMS “tilted” proposal

1.4

LI I \ L] \ \ ! { f !
1000

 Maybe we can unroll + flatten the barrel layers

2500

* ...but size increases with each detector layer

« Raw data is extremely high dimensional :‘g" . _ track
8 ' () ;
(O(10°) channels!) =]
* Maybe we can coarsen it —
(like AM methods)
» Smart down-sampling needed I
| PINS | Sector #4711/~ , DIOStae
* CV techniques are good at this Sector #4635 "~ Superstrip

1.6

1.8

20
24

% :(3
EXil

4.0

n

z [mm)]

Convolutional networks as track finders

Input track image Stub features Segment features

)
.
.
“

Stub filters

m W hg Convolutions and pooling —»

e Convolutional filters can be thought of as track pattern matchers

« Early layers look for track stubs

 Later layers connect stubs together to build tracks

Higher level
features

L)
S e
.
®
®

.
% 2
.
e®
®

* Learned representations are in reality optimized for the data => may be abstract
and more compact than brute force pattern bank

 The learned features can be used in a variety of ways

» Extract out track parameters

* Project back to detector image and classify hits

10

What can CNNs learn about tracks?

* Convolutional auto-encoder: can it learn a smaller-dimensional
representation that allows it to fully reconstruct its inputs?

Input Model prediction
* Decently well sof | ' 6o
50 e 50
-
| f |50
E 30 g 30
20‘ f 201
10 - 10
._-l.-
0k . A 0
0 10 20 30 40 50 60
Layer
* De-noising: can it clean out noise hits?
Input

e Seems soO 60

Pixel
W
o

0 10 20 30 40 50 60 0 10 20 30 40 50 60
https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d learning.ipynb Layer

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

What can CNNs learn about tracks?

* Track parameter estimation: can it predict the tracks’ parameters?

« Some inspiration from Hough Transform: binned parameter space with
peaks at the correct values

* By converting regression problem into discrete classification problem, can

handle variable number of tracks with relatively simple CNN architecture
Target Prediction

Input
p . 1.0

1.0 1.0
0.9
0.8
1 0.7
10.6
41 0.5
4104
0.3
0.2
0.1

1 l 1 l 1 l —1.0 0.0 —1.0
0 10 20 30 40 50 60 0O 10 20 30 40 50 60 0O 10 20 30 40 50 60

Layer Track intercept Track intercept

0.5 0.5

o
o
o
o

Pixel
(9]
o

Track slope
Track slope

|
o
wn

|
o
)

* Might be an interesting approach, but it has limitations
* doesn’'t map params onto the hits like Hough

* precision comes at cost of dimensionality
https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d learning.ipynb

12

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

Ongoing HEP.TrkX studies

 About the project
* https://heptrkx.github.io/
* Pilot project funded by DOE ASCR and COMP HEP
» Part of HEP CCE

* People:

LBL: Me, Mayur Mudigonda, Prabhat, Paolo
Caltech: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng
FNAL: Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris

 Exploratory work on toy datasets

* Hit classification for seeded tracks with LSTMs and CNNs
* End-to-end track parameter estimation with CNN + LSTM
 and some others

13

https://heptrkx.github.io/

Hit classification with LSTMs in 2D

Model prediction

: o :
Output detector layer Track in 20% noise

predictions

Target track

—
L1 11
N

]
w

]

0

Pixel

softmax activations

ModeIL::::jiction
w0 | Multi-track background
Input detector layer 30 30
arrays - -
Target track g 20 € 20
» Seeded track inputs, pixel score . S H__T_T
outputs per detector layer o ode! medicton

Variable-sized
detectorlayers

* Works decently well

« Can be extended to multiple
iInput seeds and output channels

h . ok
No—5

https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/Istm_toy2Dip e & — B o o= TR
https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/Istm_toy2D_varlayer.ipynb"***" o A

https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D.ipynb
https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D_varlayer.ipynb

Hit classification with CNNs in 2D

Trained with 10 conv layers, no down-sampling

Input Model prediction

CNNs can also extrapolate

and find tracks

Extrapolation reach may be
limited without
downsampling

30

-

Autoencoder architecture °% 020 30 49 6 o 20 30 40

allows to extrapolate farther e Layer

9-layer convolutional “autoencoder”
Input Model prediction

6 10 20 30 40 0 10 20 30 40
Layer Layer

15
https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit classification/cnn toy2D.ipynb

https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/cnn_toy2D.ipynb

Hit classification with CNNs in 3D

Projected input

3 avg bkg tracks, 1% noise

pixel y

25

20

4
detecto, ai, o

4
detector layer

« Basic CNN model with 10 layers and 3x3x3 filters
» Gives nice clean, precise predictions

16

Architecture comparisons

Pixel prediction accuracy

Hit Classification accuracy

1.0 1.0
Uses best pixel w. = Uses best hit pixel
0.8 0.8 h \ ~
T —
0.6 0.6
> >
: @
2 “~ ‘ g
g ~ g
0.4 » ~— 0.4
~— BILSTM S BILSTM
== ConvAE T ConvAE
»—= ConvNN) S ConvNN
021+ LSTM = %211+ LSTM
=+ DeeplLSTM DeeplLSTM
+ NL-LSTM + NL-LSTM
000 20 40 60 80 100 0.0 20 40 60 80 100

Average number of background tracks

Average number of background tracks

* Both LSTMs and CNNs do well at classifying hits for reasonable
occupancy

* Models’ performance degrades with increasing track multiplicity
 CNNs seem to scale well to high track multiplicity

[Work of Dustin Anderson]
Track parameter estimation

» Use a basic CNN with downsampling
and regression head to estimate a
track’s parameters

» could be an auxiliary target to guide
training, or potentially useful as the
final output of tracking!

» |dentifying straight line params in heavy
noise:

Input Model prediction

18

1.0

0.8

0.6

0.4

0.2

0.0

[Work of Dustin Anderson]

Extending to variable number of tracks

« Attach an LSTM to a CNN to emit parameters for a variable number of tracks!
 The LSTM generates the sequence of parameters *

* Requires an ordering the model can learn

» Should provide some kind of stopping criteria

Input Model prediction

Conv (3x3) x32

40
Relu
30
[[
» »
a &
20
10
0
0 10 20 30 40 0 10 20 30 40
Layer Layer
Residual distribution for NN : g =0.489, 0=0.77] 20 Residual distribution for NN: =004, 0=0.174
2.5
2.0
Intercept 1 Intercept 2 Intercept 3
1.5
1.0
| os
o0 19
] 2 B ~1.0 0.5 0.0 0.5 1.0

Intercept (truth-predict) Slope (truth-predict)

[Work of Dustin Anderson]
Estimating uncertainties on parameters

* Train the model to also estimate the uncertainties by adding additional targets:

Dense || LSTM Slopes and Intercepts
= Conv. Layers

Dense][LSTM

* Train using a log gaussian likelihood loss:

Cov. Matrix Parameters

L(z,y) = log|Z| + (y — f(x))" =7 (y — f(x))

 and voila!

Input

Model prediction

Pixel

Layer

20

Visualizing CNN features

[Work of Dustin Anderson]

* We can visualize what the CNN is learning by finding images which maximize

a particular filter’s activation

* Here are the 2nd layer filters of the CNN+LSTM track parameter model

Lo

A,

o

S
S
7

s ._.':- v.- 'r}/..'- _, ’-’};‘;l::
e A
8

“.,/.',‘ o ;'::;'. & /./.;'7 z'-'y.r":::'-"- -

1

{1
LA

"
“

r ’55‘
M

L

v
.,_u".‘

d

[R e

P VPR S e g

e s B P At |
| “9 '.~"- :

21

Conclusion

* There is some hope that deep learning techniques could be useful for particle
tracking

* Powerful non-linear modeling capabilities
* Learned representations > engineered features
* Easy parallelization

* |t's not yet known if computer vision techniques like CNNs offer the most
promise, but they have some nice features

* They can learn useful things about the data and seem versatile
* Some successes seen with highly simple toy datasets

* Where do we go from here?
* Try to apply these ideas to realistically complex data

* Continue thinking up new approaches

22

Backup

23

3D toy detector data

= 3 // Att LRSS -~
NN

- e

detgctor la);er

3

 Starting to get a little more “realistic”

* 10 detector planes, 32x32 pixels each

* Number of background tracks sampled from Poisson

 With/without random noise hits

* Flatten each plane for the LSTM models

* Adapting my existing models to this data is mostly straightforward
* Use 3D convolution

24

What can CNNs learn about tracks?

* Track counting: can it predict how many tracks are in an event?

* can be framed as a regression problem, but here | framed it as a
classification problem

' 0 Prediction _

[target
B prediction

0.8

0.6

04

. 1

0 2 4) 8 10 12 14 16
Number of tracks

* seemingly not a very difficult task for a deep NN

25

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d learning.ipynb

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

Next-layer LSTM prediction

Projected input 3 avg bkg tracks, 1% noise

pixel y

—
o

detector layer detector layer

* Next-layer model gives predictions that are less precise but smoother and more accurate

* Mostly unaffected by nearby stray hits
 With this detector occupancy, they are the best at classifying hits
 but this may change with higher occupancy

26

The HEP.TrkX project

* A 1-year pilot project to develop ML algorithms for HEP tracking
* Funded by DOE ASCR and COMP HEP, part of HEP CCE
* Collaboration between ATLAS, CMS, LAr folks from LBL, Caltech, and FNAL

LBL.: Me, Mayur Mudigonda, Prabhat, Paolo
Caltech: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng
FNAL: Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris

e Some goals
* Explore the broad space of ideas on simplified tracking problems
* Develop a toolkit of promising ideas
* ideas that work (physics constraints)
* ideas that scale (computing constraints)
* The work is in an exploratory phase
 Testing ideas in a breadth-first fashion
* Very much a work-in-progress

27

Other ideas - data transforms

* Hough Transform breaks down in LHC-like data due to process noise
and high occupancy

H
H
PP ...
. > -
— =
/ TEmmmmm— -.i.--..'...
/ i

I

parameter space

» But what if a deep network could /earn a mapping to group together
hits that belong to the same track?

* You don’t need to impose a specific representation
* The model could take event context into account

28

Other ideas - graph convolutions

« Graph convolutions operate on graph-structured data, taking into account
distance metrics

* https://tkipf.qithub.io/graph-convolutional-networks/

Hdden layer Hidden layer

input e v Output
° °

* Connections between ~plausible hits on detector layers can form the graph
* Handles sparsity naturally
» Scales naturally with occupancy

| haven’t dedicated much thought to this yet, but it may be versatile enough to
do the kinds of things I've already demonstrated

29

https://tkipf.github.io/graph-convolutional-networks/

ATLAS tracking in dense environments

hits in the pixel and | ambiguity solving tracks!
strip detectors
high resolution
* track fit

(use NN for cluster positions)

T recover track

>
25,
f@O,
C/(J
S
,@fs

build 3-point seeds

v

filter the seeds order tracks
‘ by score

candidate
(NN to identify
merged clusters)

_ _ reject track
combinatorial

Kalman filter

v

track
candidates

assign a
score per

candidate

clusters, holes, clusters can be shared by < 2 tracks;
1% log(pr) tracks can have < 2 shared clusters

Stolen from Ben Nachman’s TPM presentation:

https://indico.physics.Ibl.gov/indico/event/433/ 30

https://indico.physics.lbl.gov/indico/event/433/

Model architectures - ConvNN

Layer (type) Output Shape Param # Connected to

input 1 (Inputiayer) (Neme, 10, 32, 32) o
reshape 1 (Reshape) (None, 1, 10, 32, 32) 0 input 1[0][0]
convolution3d 1 (Convolution3D) (None, 8, 10, 32, 32) 224 reshape 1[0][0]
convolution3d 2 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 1[0][0]
convolution3d 3 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 2[0][0]
convolution3d 4 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 3[0][0]
convolution3d 5 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 4[0][0]
convolution3d 6 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 5[0][0]
convolution3d 7 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 6[0][0]
convolution3d 8 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 7[0][0]
convolution3d 9 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 8[0][0]
convolution3d 10 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 9[0][0]
convolution3d 11 (Convolution3D) (None, 1, 10, 32, 32) 217 convolution3d 10[0][0]
reshape 2 (Reshape) (None, 10, 1024) 0 convolution3d 11[0][0]
timedistributed 1 (TimeDistribute(None, 10, 1024) 0 reshape 2[0][0]

Model architectures - Conv autoencoder

Layer (type) Output Shape Param # Connected to
reshape 1 (Reshape) (None, 1, 10, 32, 32) 0 input 1[0][0]
convolution3d 1 (Convolution3D) (None, 8, 10, 32, 32) 224 reshape 1[0]1[0]
convolution3d 2 (Convolution3D) (None, 8, 10, 32, 32) 1736 convolution3d 1[0][0]
maxpooling3d 1 (MaxPooling3D) (None, 8, 10, 16, 16) O convolution3d 2[0][0]
dropout 1 (Dropout) (None, 8, 10, 16, 16) O maxpooling3d 1[0][0]
convolution3d 3 (Convolution3D) (None, 16, 10, 16, 16)3472 dropout 1[0][0]
convolution3d 4 (Convolution3D) (None, 16, 10, 16, 16)6928 convolution3d 3[0][0]
maxpooling3d 2 (MaxPooling3D) (None, 16, 10, 8, 8) O convolution3d 4[0][0]
dropout 2 (Dropout) (None, 16, 10, 8, 8) O maxpooling3d 2[0][0]
convolution3d 5 (Convolution3D) (None, 32, 10, 8, 8) 13856 dropout 2[0][0]
maxpooling3d 3 (MaxPooling3D) (None, 32, 10, 4, 4) O convolution3d 5[0][0]
dropout 3 (Dropout) (None, 32, 10, 4, 4) O maxpooling3d 3[0][0]
convolution3d 6 (Convolution3D) (None, 64, 10, 4, 4) 55360 dropout 3[0][0]
maxpooling3d 4 (MaxPooling3D) (None, 64, 10, 2, 2) O convolution3d 6[0][0]
dropout 4 (Dropout) (None, 64, 10, 2, 2) O maxpooling3d 4[0][0]
convolution3d 7 (Convolution3D) (None, 96, 10, 2, 2) 73824 dropout 4[0][0]
maxpooling3d 5 (MaxPooling3D) (None, 96, 10, 1, 1) O convolution3d 7[0][0]
dropout 5 (Dropout) (None, 96, 10, 1, 1) O maxpooling3d 5[0][0]
convolution3d 8 (Convolution3D) (None, 128, 10, 1, 1) 36992 dropout 5[0][0]
permute 1 (Permute) (None, 10, 128, 1, 1) O convolution3d 8[0][0]
reshape 2 (Reshape) (None, 10, 128) 0 permute 1[0][0]
timedistributed 1 (TimeDistribute(None, 10, 1024) 132096 reshape 2[0][0]

Total params: 324488

32

Model architectures - LSTM

Layer (type) Output Shape Param # Connected to

input_1 (Inputiayer) (Nome, 5, l024) o
lstm 1 (LSTM) (None, 9, 1024) 8392704 input 1[0][0]

timedistributed 1 (TimeDistribute(None, 9, 1024) 1049600 lstm 1[0][0]

Total params: 9442304

33

